971 research outputs found

    PerformanceNet: Score-to-Audio Music Generation with Multi-Band Convolutional Residual Network

    Full text link
    Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts have been made to build an AI model that can render realistic music audio from musical scores. Directly synthesizing audio with sound sample libraries often leads to mechanical and deadpan results, since musical scores do not contain performance-level information, such as subtle changes in timing and dynamics. Moreover, while the task may sound like a text-to-speech synthesis problem, there are fundamental differences since music audio has rich polyphonic sounds. To build such an AI performer, we propose in this paper a deep convolutional model that learns in an end-to-end manner the score-to-audio mapping between a symbolic representation of music called the piano rolls and an audio representation of music called the spectrograms. The model consists of two subnets: the ContourNet, which uses a U-Net structure to learn the correspondence between piano rolls and spectrograms and to give an initial result; and the TextureNet, which further uses a multi-band residual network to refine the result by adding the spectral texture of overtones and timbre. We train the model to generate music clips of the violin, cello, and flute, with a dataset of moderate size. We also present the result of a user study that shows our model achieves higher mean opinion score (MOS) in naturalness and emotional expressivity than a WaveNet-based model and two commercial sound libraries. We open our source code at https://github.com/bwang514/PerformanceNetComment: 8 pages, 6 figures, AAAI 2019 camera-ready versio

    MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment

    Full text link
    Generating music has a few notable differences from generating images and videos. First, music is an art of time, necessitating a temporal model. Second, music is usually composed of multiple instruments/tracks with their own temporal dynamics, but collectively they unfold over time interdependently. Lastly, musical notes are often grouped into chords, arpeggios or melodies in polyphonic music, and thereby introducing a chronological ordering of notes is not naturally suitable. In this paper, we propose three models for symbolic multi-track music generation under the framework of generative adversarial networks (GANs). The three models, which differ in the underlying assumptions and accordingly the network architectures, are referred to as the jamming model, the composer model and the hybrid model. We trained the proposed models on a dataset of over one hundred thousand bars of rock music and applied them to generate piano-rolls of five tracks: bass, drums, guitar, piano and strings. A few intra-track and inter-track objective metrics are also proposed to evaluate the generative results, in addition to a subjective user study. We show that our models can generate coherent music of four bars right from scratch (i.e. without human inputs). We also extend our models to human-AI cooperative music generation: given a specific track composed by human, we can generate four additional tracks to accompany it. All code, the dataset and the rendered audio samples are available at https://salu133445.github.io/musegan/ .Comment: to appear at AAAI 201
    • …
    corecore